Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Forest disturbances associated with edge effects, wildfires, and windthrow events have impacted large swaths of the tropics. Defining the levels of forest disturbance that cause ecologically relevant reductions in fruit and seed (FS) production is key to understanding forest resilience to current and future global changes. Here, we tested the hypotheses that: (1) low‐intensity experimental fires alone would cause minor changes in FS production and diversity in a tropical forest, whereas synergistic disturbance effects resulting from edge effects, wildfires, droughts, and blowdowns would drive long‐term reductions in FS diversity and production; and (2) the functional composition of FS in disturbed forests would shift toward tree species with acquisitive strategies. To test these hypotheses, we quantified FS production between 2005 and 2018 in a large‐scale fire experiment in southeast Amazonia. The experimental treatments consisted of three 50‐ha plots: a Control plot, a plot burned annually (B1yr) and a plot burned every three years (B3yr) between 2004 and 2010. These plots were impacted by edge effects, two droughts (2007 and 2010), and a blowdown event in 2012. Our results show that FS production remained relatively high following low‐intensity fires, but declined where fires were most severe (i.e., forest edge of B3yr). The number of species‐producing FS declined sharply when fires co‐occurred with droughts and a windthrow event, and species composition shifted throughout the experiment. Along the edge of both burned plots, the forest community became dominated by species with faster relative growth, thinner leaves, thinner bark, and lower height. We conclude that compounding disturbances changed FS patterns, with a strong effect on species composition and potentially large effects on the next generation of trees. This is largely due to reductions in the diversity of species‐producing FS where fires are severe, causing a shift toward functional traits typically associated with pioneer and generalist species.more » « less
-
Tropical woody plants store ∼230 petagrams of carbon (PgC) in their aboveground living biomass. This review suggests that these stocks are currently growing in primary forests at rates that have decreased in recent decades. Droughts are an important mechanism in reducing forest C uptake and stocks by decreasing photosynthesis, elevating tree mortality, increasing autotrophic respiration, and promoting wildfires. Tropical forests were a C source to the atmosphere during the 2015–2016 El Niño–related drought, with some estimates suggesting that up to 2.3 PgC were released. With continued climate change, the intensity and frequency of droughts and fires will likely increase. It is unclear at what point the impacts of severe, repeated disturbances by drought and fires could exceed tropical forests’ capacity to recover. Although specific threshold conditions beyond which ecosystem properties could lead to alternative stable states are largely unknown, the growing body of scientific evidence points to such threshold conditions becoming more likely as climate and land use change across the tropics. ▪ Droughts have reduced forest carbon uptake and stocks by elevating tree mortality, increasing autotrophic respiration, and promoting wildfires. ▪ Threshold conditions beyond which tropical forests are pushed into alternative stable states are becoming more likely as effects of droughts intensify.more » « less
An official website of the United States government
